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Abstract

We present an approach for determining the vibrational eigenstates of four-atom
molecules. The primary representation of the (six-dimensional) eigenstates involves
a finite basis or quantum number representation, whereas Hamiltonian matrix-
vector products are evaluated with the aid of certain grid or discrete variable rep-
resentations. This approach leads to computational and memory demands that are
within acceptable limits. The implicitly restarted Lanczos method, as implemented
in the ARPACK suites of codes, is then applied to determine some of the corre-
sponding vibrational eigenstates. A distributed-memory parallel implementation of
the method allows very large symmetric matrix eigenvalue problems—on the order
of N = 2-10%—to be tackled. The lowest fifty vibrational states of the HOCO
molecule, with zero total angular momentum and even parity, are accurately com-
puted on Argonne National Laboratory’s IBM SP computer.

1 Introduction

The accurate determination of vibrational eigenstates is a challenging compu-
tational problem for many molecular systems [3,3]. The problem is particularly
difficult when good zero-order pictures (e.g., normal modes) are not easily
found or when highly excited states are desired. Two interrelated numerical
tasks must be considered:

— determine a suitable finite representation of the underlying partial differen-
tial operator or Schrodinger equation, and
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— determine the relevant eigenvalues and eigenvectors of the finite, but gen-
erally large symmetric Hamiltonian matrix H that results.

When N, > 4 atoms are involved and/or highly excited states are desired, the
computation can easily suffer from basis set explosion because representations
are typically product ones involving dimensions on the order of N = nf" |
where n is on the order of 10 and F', the number of degrees of freedom, is
3N, —6 (neglecting overall rotation). A representation that requires n = 10 to
accurately represent the desired states then results in NV = 10°. Moreover, a
poor choice of representation could result in n being significantly larger than

10, particularly if highly excited states are to be accurately described.

Once the representation is decided upon, the second task, determination of
the eigenvalues and eigenvectors, may prove to be the computational bottle-
neck. For instance, the determination of all the eigenvalues when N > 10° is
currently not feasible, nor is it desirable because only the lower energetic por-
tion of the spectrum, or perhaps some particular spectral range, is typically
of physical interest. Iterative methods such as the Lanczos method [3] can in-
stead be used to determine some of the eigenvalues and eigenvectors. Since the
Lanczos method requires matrix-vector products with H, our representation
must be such that an application of H to a vector is computationally efficient.

Discrete variable representations (DVRs) [3,3,3] of the Schrédinger equation
are useful because the resulting matrix-vector products are efficiently evalu-
ated. The idea behind a one-dimensional DVR is to define a set of discrete
points that is essentially equivalent to some more standard finite basis rep-
resentation. The computational advantage arises from the fact that one part
of the matrix-vector product, the “potential” part, is then well approximated
by a diagonal matrix-vector product. When just one dimension is considered,
there is no practical advantage of employing a DVR; but if two or more dimen-
sions are being considered, the resulting matrix-vector product scales much
better than N?2. This improvement occurs because the potential part of the
matrix-vector product remains diagonal and the kinetic part factors into blocks
associated with the different dimensions. It is also possible to invoke energetic
cut-offs within a DVR by excluding DVR points that yield potential energies
greater than some cut-off value. This strategy reduces N and also the spectral
range. Carrington and co-workers [3,3,3], for example, have developed and ap-
plied approaches to molecular vibrational states based on applying the Lanczos
method to DVR or grid-based Hamiltonian representations with considerable
success. Nevertheless, despite the advantages of such DVRs, or variations on
the DVR idea such as potentially optimized [3,3] DVRs (PODVRs), the re-

sulting product representations can still be very large.

Some applications of DVRs to vibrational eigenstate problems have employed
the sequential truncation-diagonalization (STD) technique [3,3], which avoids



extremely large matrices by solving a sequence of reduced-dimensional eigen-
value problems. The technique fixes one or more of the coordinates in the
problem at their DVR values, and represents the full eigenvalue problem in
terms of the reduced-dimensional eigenvectors. (The use of a DVR represen-
tation makes it particularly convenient to carry out the STD idea.) The use of
energetic cut-offs in deciding which reduced-dimension eigenvectors to employ
can then lead to manageable effective values of NV such that, for example, it
may be possible to use standard eigenvalue-eigenvector methods. The STD
approach is an excellent strategy that effectively reduces the dimension of the
problem at the cost of additional algorithmic complexity.

The main objectives of the present paper are (i) to present an approach for
obtaining vibrational eigenstates of four-atom systems using some of the ideas
outlined above that, with the aid of parallel computers, can be applied to
challenging problems and (ii) to give an illustration, with a nontrivial example,
of how the approach works. In particular, we retain, in part, the idea of using
DVRs or grid representations, but explore how a Lanczos method applied
within a parallel computing environment may be used.

We employ an implicitly restarted Lanczos method (IRLM) as implemented
in the parallel implmentation [3] of the ARPACK [3] software package. The
use of an implicitly restarted algorithm yields the corresponding eigenvectors
directly. Such an approach can be more demanding in terms of computer mem-
ory than the straightforward Lanczos method. Therefore, to keep computer
memory requirements down, we retain a quantum number (or finite basis)
representation as the primary representation, and we employ the DVR or grid
representations only as intermediate stages to facilitate the evaluation of the
matrix-vector products.

Recently, Hayes and co-workers [3,3] have reported impressive calculations of
the rovibrational eigenstates of certain three-atom systems using a combina-
tion of DVR/STD methods for the representation of the problems, and the
IRLM for solving the resulting eigenvalue problems. A parallel implementation
of the IRLM was shown to yield an efficient procedure for determining many
eigenstates of a difficult molecular problem (HO5 with total angular momen-
tum J > 0). Our approach thus shares some similarities with this work. The
main differences are that our focus is on larger, four-atom problems and we
use a simpler combined quantum number/DVR Hamiltonian representation.

We illustrate the combined approach for a potential model of the HOCO
molecule [3,3]. This system is challenging for at least two reasons. First, three
relatively heavy atoms are present, leading to some relatively small de Broglie
wavelengths. Second, both cis and trans isomers (with different effective nor-
mal mode frequencies) are important in the eigenstates we will determine. In
fact, our calculations represent the best (and largest) theoretical vibrational



eigenstate estimates for HOCO currently available.

Section 2 describes our representation of the four-atom Hamiltonian matrix in
terms of DVRs. Section 3 outlines the IRLM and our parallel implementation.
Section 4 discusses the application to HOCO. Section 5 presents some brief
concluding remarks.

2 Representation of the Hamiltonian Operator and Matrix-Vector
Product

In this section we discuss both grid and quantum number representations.
2.1 Finite Basts and Grid Representations of the Hamiltonian Operator

We consider a system of four atoms A, B, C, and D interacting via a Born-
Oppenheimer potential energy function V. While it is possible to consider
nonzero total angular momenta J, we restrict attention to the case J = 0.
In this case there are six internal degrees of freedom. Diatom-diatom Jacobi
coordinates are employed. The three radial degrees of freedom are rq, the
internuclear distance between A and B; ry, the internuclear distance between
C and Dj; and R, the distance between the center of masses of AB and CD.
The three angular degrees of freedom are #,, the angle between the vectors
associated with ry and R; 5, the corresponding angle associated ry and R; and
o, the out-of-plane torsional angle [3,3]. The time-independent Schrédinger
equation

Hopy = Eptbr , k= 1,2, | (1)

for the vibrational eigenfunctions ¢y = ¥g(R,r1, 72,601,602, ¢) and energies &,
involves the Hamiltonian operator (with & = 1) [3,3]
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with masses p = (ma + mp)(me + mp)/(ma + mp + mc —I—AmD), my =
mamp/(ma+mp) and my = memp/(mce+mp). (The j7, 77, and j7, operators
involve the angular variables and need not be explicitly defined here.)

The above Hamiltonian operator H must be (approximately) represented in
some finite matrix representation, H. Two representations are employed: (i) a



quantum number (or finite basis) representation, H, and (ii) a grid (or DVR)
representation, H8. The quantum number representation, which is based on
zero-order potentials adapted to the specific potential V of interest, is our ba-
sic representation. For example, the distribution of the problem over proces-
sors and the iterative diagonalization procedure are all done within the quan-
tum number representation. However, the actual (Hamiltonian) matrix-vector
product, the key computational bottleneck, is evaluated using two represen-
tations, the quantum number representation for one part of the matrix-vector
product, and the DVR representation for another part of it (due to the po-
tential). This combined approach leads to the matrix-vector product scaling
better than N?2.

2.2 Quantum Number Representation

We may formally think of the quantum number representation in terms of
abstract kets |n, v1,ve, j1,J2, j12), With projection onto coordinate space

<R7 1,72, 01,02, ¢|n7v17v27j17j27j12> = ¢n(R)Xv1(Tl)Xw(Tz)Fjl,p,m(917927 </5)-

The basis functions for R, r; and ry are each based on suitable zero-order po-
tentials, in other words are determined by the solution of the one-dimensional
Schrodinger equations

o Vel () = .60, ®)
l_;ﬁ;—; + Vl(“)] Xoy (1) = Eoy X (1), (4)
l_%mzaa—:% + Vz(”)] X (12) = €y X (12), (5)

where Vg, V1, and V; are defined, for example, by suitable one-dimensional
cuts of the full potential V. We denote the number of radial basis functions
used for R, ry, and ry by Ng, Ny, and N,, respectively.

The angular functions F}, ;, i, (61,04, ¢) are rotational eigenfunctions consis-
tent with zero total angular momentum that are also chosen to be eigen-
functions of 512, 522, and parity. They are certain weighted sums of spherical
harmonic functions associated with the two diatomic units. (Both j; and j»
have allowed values 0,1,2,... and for J = 0 the allowed values of j;5 are be-
tween [j; — j2| and j1 4 j2. See Refs. [3,3] for further details.) We denote the
total number of angular basis functions F}, ;, i, employed in our calculations

as Ny4.



Thus, in the quantum number representation a wavefunction is approximated
as

¢ = Z Crnu1,v2,01,52,d12 ganm Xws Fj1 2J2,J12 9 (6)

7,01,V2,01,J2,]12

where all sums are finite. The act of the Hamiltonian matrix in this quantum
number representation on the vector ¢ is denoted Hec.

2.3  Grid Representations

Let the kets |R;, r1j, 72k, 014, 025, ¢.) denote a formal grid or DVR, where 4, j,
k, a, b, and ¢ are discrete indices for the corresponding grid points or DVR.
The R;, r1j, and ry; points are taken to be those consistent with the associated
basis function representations given above, following the ideas of Echave and
Clary. Thus, the coordinate matrices associated with R, ry, and ry are diago-
nalized in the respective basis functions (¢, xu,, and Y., ), with the eigenvalues
corresponding to the desired (PO)DVR grid points. Since the PODVR points
are adapted to the potential at hand, they lead to a particularly compact
and accurate representation. The angular grid representation is a product one
determined by Gauss-Legendre quadrature points for ; and #,, and evenly
spaced (Chebyshev or Fourier) points for ¢. (The efficient representation of
nondirect product basis functions such as spherical harmonics, and thus our
angular functions, via angular grids is, of course, a difficult problem.)

If we represent Ve, the potential part of the matrix-vector product in the
quantum number representation, by employing the above-mentioned angular
quadratures, we can then rewrite the matrix-vector product as a three-step
process. First, transform the basis set to the grid representation; second, mul-
tiply by the diagonal potential matrix; third, transform back to the basis
representation. The associated transformation matrices between the quantum
number and angular grid representations thus involve the quadrature weights
and the basis functions 4}, j, ;-
An important reason for our use of an intermediate grid representation, as op-
posed to simply using just the quantum number or finite basis representation,
lies in the angular part of the problem. (If one were to employ only a basis
representation, there would be on the order of Ny Ny NgN3 associated angular
potential matrix elements to store. As the total number of angular functions,
N4, becomes large, e.g., on the order of 1000 or more, the number of matrix
elements can exceed typical computer memory limitations. Of course, if one
adopts an STD approach [3], this situation can be improved.)

Thus in the grid representation, the actual wavetunction is formally approxi-



mated as

V=3 dijrapefi(R)[fi(r1) fr(r2)gape (01,02, ¢), (7)

i7j7k7a7b7c

where f;, f;, fx, and g, . involve the underlying basis function representations
and transformation functions.

Let M4 denote the total number of angular grid points, and let My, M,,
and Mp denote the number of radial PODVR grid points associated with rq,
ro, and K. We note that better accuracy in the computed eigenvalues can
be obtained by employing M; > N;, where N; is the associated number of
underlying basis functions in the quantum number representation. This is not
surprising in relation to the angular degrees of freedom because a product
grid representation is being employed to describe a nondirect product basis
angular set involving spherical harmonics [3,3]. Furthermore, in practice (Sec.
4.1) we impose an energetic cut-off on the basis functions to be included that
reduces N4 and further accentuates the difference between M4 and Ny.

Regarding the PODVRs used to represent the radial variables, it is also some-
times useful to employ M; > N; because the associated quadratures over the
potential are more accurately computed. (This is related to the fact that the
underlying basis functions in a PODVR representation are not classical or-
thogonal polynomials, and so the procedure is not the same as employing a
high-order Gaussian quadrature.) Allowing for M; > N; leads to rectangular
(as opposed to square transformation) matrices with more rows than columns
but poses no real technical difficulties. The benefit is more accuracy for the
same computer memory storage. This strategy also does not alter the spectral
range of the Hamiltonian matrix, and so the number of iterations required
to obtain the energy levels remains approxmately the same. The Hamiltonian
matrix remains a real symmetric matrix even when a rectangular transforma-
tion matrix Z is involved.

2.4 FEvaluating the Matriz-Vector Product

Our goal is the evaluation of the Hamiltonian matrix-vector product in the
quantum number representation, He. One can view the use of the grid repre-
sentation (where the coefficients of the wavefunction are denoted by d) as an
intermediate step in obtaining He.

The idea behind evaluating the matrix-vector product is most easily under-
stood by a one-dimensional example. Consider a 1-D Hamiltonian operator
h=1i+ v(x), where £ is a differential kinetic energy operator and v(z) a poten-
tial function. Let |n,) be some quantum number representation corresponding



to the eigenstates of the zero-order Hamiltonian operator h, =1+ vo(x), that
is, ho|nz) = en,|ns). Then, h is the matrix defined by (nl|h|n;), and the
evaluation

he = hge + (v — vo)c (8)

follows. Since the quantum number representation is used for ilo, it is a diag-
onal matrix with elements given by the corresponding eigenvalues e, . There-
fore, hoc is computationally fast. While v —vg is a full matrix in the quantum
number representation, it may be taken to be a diagonal matrix in the grid
representation based on h,. Thus, we introduce a DVR |z;) which is related to
the quantum number represenation by a transformation matrix Z such that
d = Zc takes ¢ in the quantum number representation and yields the corre-
sponding amplitudes d in the grid representation. The algorithm for evaluating
hc is then

(i) evaluate the act of the diagonal matrix he on ¢ and save it as ¢,

(ii) transform from ¢ to d via d = Zc,

iii) evaluate the act of the diagonal matrix g/ —v? on d via d” = (v9 —v?)d,
)
)

v
(v

( g
(iv) transform from d” to ¢” using Z” : ¢" = Z7d", and
add ¢” to ¢/, which yields the desired result.

Written together, the real symmetric nature of the effective potential portion
of the Hamiltonian is

he = hoc + ZT(v8 — v8)Zc. (9)

If, for simplicity, we assume that N, basis functions and grid points are in-
volved, the resulting matrix-vector product still scales as N2, whether it is
done in the above way or directly in the quantum number representation.
Therefore, nothing is really gained by carrying out the matrix-vector prod-
uct this way. However, when the problem is multidimensional, such as the
present one, considerable numerical efficiency is gained. This occurs because
the transformation matrices in the above procedure are direct products. For
instance, if two coordinates are involved, say = and y, the numerical scaling
of the matrix-vector product is proportional not to (N,.N,)? but to NINy2
+N,NZ.

The full six-dimensional matrix-vector product required for our problem is
a straightforward generalization of the one- and two-dimensional discussion
above. The quantum number representation is then defined by Ng basis func-
tions associated with R, Ny basis functions associated with rq, Ny basis func-
tions associated with ry, and N4 angular basis functions. The corresponding
grid representations consist of My points in R, M; points in ry, My points in
ro, and M4 points in the three angular variables. Transformation matrices Z;
(which are rectangular when M; > N;) associated with each degree of freedom



link basis and grid representations. The major computational bottlenecks in
the matrix-vector product arise in applying the transformation matrices. We
remark that the operation count of our approach is a complicated expression
involving the N; and M;. However, the transformations between angular basis
and quadrature points represent about 80% of the numerical effort.

3 Implicitly Restarted Lanczos Method and Parallel Implementa-
tion

We briefly review the Lanczos method, then discuss how to implicitly restart
it, and finally how to implement a parallel version.

3.1 Implicitly Restarted Lanczos Method

The Lanczos method is a well-known method for calculating a few of the
extremal eigenvalues of a large symmetric matrix. Given an initial starting
(unit) vector ¢q, the method proceeds by computing the familiar three-term
recurrence

Bidj+1 = Hq; — a;jq; — Bj-19;-1, where foqo =0 and j > 1. (10)

The eigenvalues of the symmetric tridiagonal matrix T; consisting of «;’s
and f;’s on the diagonal and subdiagonal, respectively, are used to estimate
those of H. The extremal eigenvalues of T; quickly provide excellent estimates
to those of H. Since the method only requires knowledge of H through its
application to a vector, the method is well suited for large-scale eigenvalue
problems.

Equation (10) may be rewritten in matrix form as
HQ; = Q;T, + fiq;tie;, (11)

where Q; = | q; q2 - - q]‘] , T, is the associated tridiagonal matrix, and e;F

is the transpose of the last column of the order j identity matrix. We call
this a Lanczos reduction of order j. The Lanczos vectors qy, ..., q; provide an
orthogonal basis for the Krylov space {q;, Hqy,...,H'"'q;}, and thus T; is
the orthogonal projection of H onto the column span of this Krylov space. The
Lanczos method is a generalization of the power method in that a sequence
of iterates is used to approximate eigenvalues of H.

Order the eigenvalues 0; of T; so that §; < 8, < ... < 0;, and denote the
corresponding eigenvectors s,. Our goal is to present an algorithm for com-



puting k approximate eigenpairs 6;, Q;s;,(= y;) that satisfy the following two
conditions:

(i) [Hy; —y:bi]| <ew fori=1,...,k and
(ii) yly; = O(ear) when i # j, and one otherwise.

The user-specified tolerance and machine precision are denoted by ¢y and
em, respectively. The first condition is that of accuracy, the second that of
(numerical) orthogonality.

It is well known [3, pp. 479-485] that roundoff errors cause the Lanczos vectors
to lose orthogonality. However, Paige [3] showed that the loss of orthogonality
occurs precisely when an eigenvalue of T; is close to one of H. In fact, the
Lanczos vectors lose orthogonality in the direction of the associated approxi-
mate eigenvector. Moreover, failure to maintain orthogonality results in spu-
rious copies of the approximate eigenvalue produced by the Lanczos method.
We briefly review the traditional implementations of the Lanczos method that
have emerged and their method for dealing with the loss of orthogonality.

— Implementations based on selective and partial orthogonalization [3,3]. These
techniques carefully monitor the loss of orthogonality and perform addi-
tional orthogonalization steps only when necessary.

— A direct implementation of the three-term recurrence [3,3] with no addi-
tional orthogonalization steps.

— Orthogonalization of each new Lanczos vector against all the vectors gen-
erated.

The careful implementation of the first of these approaches is nontrivial. The
second approach uses a strategy to determine whether the copies produced
by the Lanczos method are spurious or correspond to a degenerate eigenvalue
of H. However, this approach may be used only for computing eigenvalues.
Further computation is required if eigenvectors are of interest.

The third approach removes the complication associated with spurious copies,
and eigenvectors are easily computed. Its drawbacks are the cost of main-
taining orthogonality (on the order of Nm? floating-point operations for m
Lanczos vectors) and storing the Lanczos basis vectors. If m is kept to a mod-
erate size, the cost of maintaining the orthogonality of the Lanczos vectors is
not a concern. We emphasize that the cost of maintaining full orthogonality
of the Lanczos basis vectors may represent a minor cost (say, less than 5%) of
the total cost in computing the eigenvalues and eigenvectors if m is not large
and the cost of computing matrix-vector products He is large. Our numerical
experiments will illustrate this behavoir.

Suppose that we are able to compute m steps of (10) where m is chosen so
that the cost of maintaining the orthogonality Lanczos vectors to machine

10



precision is small. Since we are interested in the £ smallest eigenvalues of
H, consider starting another Lanczos method with some linear combination
of y1,...,y. This restarting of the Lanczos method is continued until the &
smallest eigenvalues of T,, satisfy the two aforementioned accuracy conditions.
The motivation is that if yq,...,yx are basis vectors for an eigenspace of H,
then gr = 0 and the eigenvalues of T} are those of H.

An equivalent manner in which to restart the Lanczos method with some
linear combination of yq,...,yx is by applying the matrix polynomial (H —
Or411)--- (H — 6,,I) to the starting vector q;. This removes the components
from q corresponding to #y4q,---,0,, and specifies the linear combination of
Vi, ...,¥x However, if matrix vector products with H are expensive, then the
application of this polynomial filter is expensive.

Sorensen [3] derived an elegant scheme for applying any polynomial filter of
degree p(< m) without direct application of H. Moreover, a length m —p Lanc-
zos reduction remains. We illustrate the scheme for a degree one polynomial.
By subtracting ¢Q,, from a length m Lanczos reduction, we have

(H - NI)Qm = Qm(Tm - NI) + 6mqm+1efn- (12)

Now, we compute the orthogonal factorization UR = T,, — pI, where U
is an orthogonal matrix and R is upper triangular matrix. Substituting the
orthogonal factorization into (12) results in

(H—1D)Qp = QuUR + Bqmire,,. (13)

A simple derivation gives
T,,U = URU + ul) = UT;, (14)

where T} is an updated symmetric tridiagonal matrix. (Note that (14) is one
step of the shifted QR algorithm [3, pp. 144-145].) Next, postmultiplying the
original length m Lanczos reduction with U results in

HQ,U=Q,.T,U+ 8,4,11e. U =Q, UT! + 3,q, el U, (15)

where we used (14). Unfortunately (15) is no longer a length m Lanczos re-
duction. Because all the elements of U below the subdiagonal band are zero
(T,, — pIis tridiagonal), dropping the last column of (15) gives a length m — 1
Lanczos reduction.

By equating the first m — 1 columns on both sides of (13), we see that the
leading m — 1 columns of the updated Lanczos basis vectors Q,,U provide an
orthogonal basis for the same space as (H — pI)Q,,,—1. (Note that the leading
submatrix of order k in R contains the orthogonalization (Gram—-Schmidt)
coefficients.) In particular, the updated starting vector has been replaced by

11



(H — uI)qip~", where p is the leading diagonal element of R. Note that if
@ = 0, then a step of subspace iteration has been implicitly applied; this is
analogous to the connection between the QR algorithm and subspace iteration.
See [3] for further details.

The above scheme can be applied with each of the unwanted eigenvalues
Opi1,- -+, 0. Alength m —p = k Lanczos reduction results where the k eigen-
values of T}, are the wanted eigenvalues 6y, - - -, §—the best k£ approximations
to the smallest eigenvalues of H. Equivalently, we have implicitly applied the
matrix polynomial (H —6411I)--- (H—0,,I) to the leading k Lanczos vectors.

Polynomial filters of degree no more than m may be applied in this fashion.
Since the application of the polynomial filter is accomplished with an implicity
shifted QR algorithm on T,,, the resulting algorithm is called the implicitly
restarted Lanczos method (IRLM). In summary, the advantages of an IRLM
include

— fixed storage requirements by fixing a value of m,

— the ability to compute eigenvectors orthogonal to machine precision (since
m is of modest size),

— application of the polynomial filter W(H) (of degree no larger than m) with-
out the need for computing additional matrix vector products with H, and

— incorporation of the well-understood numerical and theoretical behavior of

the QR algorithm.

The last point is important because it allows the possibility of constructing
general-purpose and reliable software for the large-scale eigenvalue problem.
The reader is referred to [3] for further details.

3.2 Parallel Strategy

Suppose we have a length j — 1 Lanczos reduction HQ;1 = Q;-1T;_1 +
ﬂj_lqjef_l and want to increase the length by one. The Lanczos matrix Q; is
easily computed by appending q; to Q;_1, and the y — 1 subdiagonal element
of T; is B;_;. The computational burden is in computing the following three
tasks:

(i) w < Hq,
(i) g — Qfw,
(ili) f < w—Q;g (and thus 3; = [[f[| and q;11 =1£/5;).

Steps (2) and (3) are performed so that the columns of Q; are orthogonal
to q;41. The vector f is the projection of w onto the orthogonal complement
of the Krylov space {qi, Hqu,...,H’~!q;}. In practice, Steps (2) and (3) are

12



repeated when ||[f|| < v/2/2||Hgq;||; see [3,3] for further details. Note that g
is the jth column of T;; 3,1 and «; are the last two elements of g, and the
leading j — 2 elements are equal to zero.

The parallel implementation [3] of IRLM in ARPACK uses a data-parallel
model of computation. So that large eigenvalue problems can be solved, the
rows of the Lanczos matrix Q; are distributed (w and f are also conformably
distributed) among the available processors. Because of the data distribution,
parallelism is exploited during the computation of the matrix-vector product
Hgq;. Communication among the processors is required only for Step (2) and
the computation of ||f|| and ||w||. Since each processor requires g for Step (3),
commincation is accomplished with global reductions that are broadcast to
every processor. Thus, every processor has a copy of T; and so performs the
implicitly shifted QR algorithm needed for the implicit restarting.

Equation (6) suggests a straightforward data distribution over the radial vari-
ables in the quantum number (or finite basis) representation. Since H has a
simple block structure that operates on vectors of length N4, the paralleliza-
tion scheme spreads this work among the processors. (The application of the
Hamiltonian matrix is distributed among at most NrNy Ny processors.) Our
parallel strategy involves distributing consecutive rows of the Lanczos vectors
in small multiples (at most 3) of size N4 among the available processors.

4 Vibrational States of HOCO

In this section we discuss the application of our model to HOCO.

4.1 Potential Model and Implementation Details

The four-atom system HOCO is of considerable theoretical and experimental
interest because intermediate HOCO complexes are believed to play a signifi-
cant role in the important combustion reaction OH + CO — H + CO;. See,
for example, the discussion and references in [3,3], Here we focus on deter-
mining some of the (bound) vibrational states of HOCQO. This is a challenging
theoretical problem owing to the importance of two energetically close isomers
consistent with trans and cis conformations. Thus, normal mode descriptions
welded to one particular equilibrium geometry are not appropriate, particu-
larly for excited vibrational states. Furthermore, the presence of three rela-
tively heavy atoms makes quantum mechanical studies of this system difficult,
owing to the underlying small de Broglie wavelengths involved. A reasonable
potential energy surface based on ab initio electronic structure data is readily

13



available [3,3]. (A newer surface [3] has been devised that improves some of
the older surface’s energetics. Our main goal is to illustrate the utility of our
computational method, and so the older surface [3,3] suffices for our purposes.)

In relation to the notation of Section 2, R now denotes the distance between
the centres of mass of OH and CO; r; and r3 denote the OH and CO internu-
clear distances; and 6y , 65, and ¢ are the angular variables associated with OH
and CO and the torsional angle, respectively. The radial DVR representations
involve zero-order potentials based on the full potential in the region of the
HOCO trans and cis isomers. The OH, CO and OH,CO zero-order potentials,
used to define the radial grid representations, were chosen to be functions typ-
ical of the potential variation about the cis and trans equilibrium geometries.
(Naturally there is no unique way of establishing such zero-order potentials.
We simply fit Morse-like potential functions to the average of the potential
variation in the cis and trans forms.)

We briefly point out a few features of the potential and related details. See [3,3]
for a more thorough discussion. We employ an energy scale such that the po-
tential energy is zero with OH + CO separated (large R limit) and with inter-
nuclear distances corresponding to minima in the relevant OH and CO parts
of the potential. The potential energy minimum is a trans-HOCO structure
with potential energy —5.92-1072 a.u. (—1.61 eV or —12990 cm™!). A second
minimum, corresponding to ¢is-HOCO, exists at an energy of just 0.4 - 1072
a.u. (900 cm™!) above the ¢rans minimum, that is, at an energy of —5.5- 1072
a.u. with the energy zero as defined above. The barrier between trans and cis
forms has potential energy —4.74 - 1072 a.u. (Relative to the ¢rans minimum,
the barrier is 1.18 - 1072 a.u.)

The order of the Hamiltonian matrix in the quantum number representation
is N = NpNiN2Ny4. Numerical experiments (see below) are carried out to
test convergence of the computed energy levels with respect to the number
of basis functions (Ng, Ny, Ny) associated with the three radial degrees of
freedom, and the number of basis functions (N4) associated with the angular
degrees of freedom. It is also necessary to test convergence with respect to the
corresponding numbers of grid points M; in the case of the radial variables
where we allow M; > N, for ¢+ = R, 1 and 2. We note that N4, in turn,
is determined by the maximum number of j; and j, states employed, via
standard angular momentum considerations [3,3]. Increasing the maximum

max max

allowed 71, 7%, or the maximum allowed j3, j5'**, can significantly increase

Ny.

We also employ certain energy cut-offs, which do not appreciably affect the
computed eigenstates of interest. The potential energy is cut off at 0.1 a.u.
(~ 22000 cm™'), which is well above the energies of interest and corresponds
to the limit of unbounded OH + CO states. This cut-off significantly reduces
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the spectral range (distance between maximum and minimum eigenvalues).
Because the spectral range is modest (on the order of three orders of magni-
tude), the minumum (leftmost) eigenvalues of the discrete Hamiltonian may
be computed with a Lanczos method that uses only matrix-vector products

He.

It is also convenient to employ a zero-order rotational energy cut-off, which
affects N4, the total number of angular basis functions, by excluding any
(J1,72) combination that leads to the associated rigid rotor energy Byji(j1 +
1) 4 Baja(j2 + 1), exceeding some value. Estimates By and Bs of the diatomic
rigid rotor constants associated with OH and CO are used. (A rotational cut-
off energy of 0.026 a.u., or 0.7 eV, was found to yield converged results, which
we have checked by comparison with smaller energy cut-offs.)

4.2 Convergence of the First Fifty-Two Figenstates

Six experiments were run to compute the lowest 52 vibrational states of the
four-atom molecule HOCO. The largest matrix eigenvalue problem was of

order 2,278, 044.

For the largest eigenvalue problem, we set Ny = 14,062, with individual
rotational quantum numbers up to j7*** = 28 and j7"** = 54. For the radial
directions, Ng = 9, N; = 6 and Ny = 3. The associated numbers of radial
quadrature points were Mr =9, M; = 7, and My = 5, and the total number

of angular quadrature points was My = 46,255.

This problem took approximately 10.7 hours using 54 nodes of the IBM SP
system at Argonne National Labratory. Since 54 processors were used, each
processor stored 42,186 (= 3 - N4) rows of the Lanczos basis vectors. (Recall
that the data distribution is done within the quantum number representation,
and so up to Np Ny N, = 162 processors could be employed. However, given the
configuration of the IBM SP, at most 60 processors were available.) ARPACK
uses the MPICH [3] implementation of MPI [3] for communication among the
processors.

Table 1 presents our best results for the lowest 52 energy levels (J=0, even
parity) of HOCO with the assumed potential function in [3,3]. We emphasize
that this study represents the first accurate determination of the vibrational
eigenstates of HOCO. Some estimates of the first twenty vibrational energy
levels have been published [3]. However, these were based on a 5D model
that included only CO zero-point energy effects, and these levels, particularly
beyond the first few levels, are not very accurate. Each of the first twenty
energies in Table 1 is, in fact, lower than its corresponding counterpart in [3],
with some of our higher energies lower by 7 - 107* a.u. (150 cm™'), which
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Table 1
HOCO energy levels relative to the ground vibrational state £ = —8354.40 cm™!.

1 0 14 | 1710.09 | 27 | 2242.55 | 40 | 2510.39
2 | 550.28 | 15| 1726.35 | 28 | 2248.04 | 41 | 2537.76
3 | 553.19 | 16 | 1777.18 | 29 | 2273.97 | 42 | 2540.66
4 | 1044.23 | 17 | 1850.25 | 30 | 2312.55 | 43 | 2546.72
5 11092.03 | 18 | 1855.85 | 31 | 2314.01 | 44 | 2596.97
6 | 1098.84 | 19 | 1950.20 | 32 | 2360.05 | 45 | 2613.81
7 | 1180.14 | 20 | 1960.82 | 33 | 2362.17 | 46 | 2639.62
8 | 1218.11 | 21 | 2030.75 | 34 | 2370.88 | 47 | 2642.36
9 | 1329.64 | 22 | 2057.10 | 35 | 2382.47 | 48 | 2674.12
10 | 1520.28 | 23 | 2076.02 | 36 | 2388.86 | 49 | 2676.64
11 | 1557.32 | 24 | 2110.35 | 37 | 2391.59 | 50 | 2732.11
12 | 1595.25 | 25 | 2146.34 | 38 | 2414.37 | 51 | 2744.82
13 | 1618.92 | 26 | 2212.85 | 39 | 2472.09 | 52 | 2768.75

is consistent with our more accurate calculations. (A detailed comparison of
the results of the two calculations is beyond the scope of the present paper.)
We have inspected some of the corresponding eigenstates, but have not made
a detailed study. (The inspection of such multidimensional eigenstates is a
difficult matter because one must consider a variety of cuts and averages over
the six-dimensional space.) The ground vibrational state is, as expected, a
trans-HOCO structure. It is consistent with a zero-point energy of a2 2.1-1072
a.u. (4630 cm™!'). However, the excited states may be cis or trans-like or
perhaps exhibit features consistent of the two isomers. This is because of
the small 0.33 - 1072 a.u. (726 cm™"') energy difference between cis and trans
isomers, and a relatively low barrier connecting the two isomers. We plan to
present a more detailed discussion of the eigenstates in future work.

We also mention that of the remaining five experiments, three differed only
in the number of angular functions used from our large problem. The three
experiments set N4 equal to 8,481, 10,115 and 12,434. The order of the cor-
responding discrete Hamiltonian were 1,373,922, 1,638,630 and 2,014, 308,
respectively. The total time needed to compute the 52 eigenpairs was 6.2, 7.6,
and 8.9 hours. This shows that our parallelization scheme scales linearly with
the number of angular basis functions. For all these experiments, the low-
est vibrational levels agreed to five signifigant digits, and the highest levels
agreed to three signifigant digits. The remaining two experiments used discrete
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Hamiltonians of order 1,000, 000.

4.3 Computational Details Associated with IRLM in PPARPACK

A few remarks are in order regarding the use of the parallel implementation
of IRLM. For all six experiments, the IRLM maintained the numerical or-
thogonality of all the Lanczos vectors to machine precision (approximately 15
decimal digits). This was accomplished by reorthogonalizing at every step of
the Lanczos reduction whenever necessary.

The size m at which the Lanczos reduction was restarted never exceeded a
value of 82. The default strategy of the ARPACK implementation of IRLM
applied the minimum of (m — k)/2 and m — k — s unwanted eigenvalues per
restart where s denotes the number of eigenvalues that satisfy the accuracy
condition (k is the number of requested eigenvalues). This strategy results in
better performance than applying m — &k unwanted eigenvalues as shifts at
every restart.

We used a value of ey = 1077 so that |[Hy; —y:0:|| < ey. We remark that only
the last (or, equivalently, the largest) 10% of the wanted eigenpairs satisfied the
accuracy condition. The remaining ones satisfied the condition to a tolerance
of machine precision. This situation occurs because the initial eigenpairs are
further refined as the last eigenpair finally satisfies the accuracy condition. For
all size experiments, an average of 17 matrix-vector products per eigenvalue
was needed to satisfy the accuracy condition. The eigenvectors y; were also
orthogonal to machine precision.

We emphasize that the cost in time to maintain the full orthogonality of the
Lanczos basis vectors along with all the other costs associated with the parallel
ARPACK implementation of IRLM—excluding the matrix-vector products—
represented only 2%-3% of the total computation time. Thus, the cost of the
computation is completely dominated by the cost of a matrix-vector product

He.

We also remark that roughly half of the time needed to complete a matrix-
vector product involved communication time. A better communication strat-
egy may be undertaken with a resulting increase in performance per processor
and overall performance. For example, after the initial data distribution in the
quantum number representation (6), a further distribution in the grid repre-
sentation (7) should be undertaken. (At present, we do not parallelize over the
Mp grid points because M; > N; for : = R, 1,2 leads to a more complicated
implementation.)

This improved communication strategy would also remove redundant work
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arrays (used on every processor) so that larger problems can be solved for
a fixed number of processors. Nonetheless, our goal was to demonstrate that
extremely large eigenvalue problems can be solved on distributed memory
machines while avoiding out-of-core memory methods. A futher data distribu-
tion in the grid representation would lead to larger eigenvalue problems solved
more efficiently.

5 Concluding Remarks

We outlined an approach for obtaining vibrational energy states of four-atom
systems. Qur approach utilizes grid and discrete variable representation ideas
and a parallel implementation of the IRLM for the calculation of eigenval-
ues and eigenvectors. We considered a very challenging problem, the HOCO
molecule, and obtained over fifty accurate eigenstates. Our results, the first
accurate determination of the vibrational levels for this system, should also
provide a useful benchmark for testing other theoretical methods for eigen-
value determination of large systems. While we did not discuss in detail the
physical nature of the eigenstates, we note that one of the strengths of the
current procedure is that it yields directly (without need of subsequent calcu-
lations) the eigenstates as well as the eigenvalues.

The main purpose of our particular parallel strategy was to make possible the
determination of many vibrational eigenstates of the HOCO problem via the
IRLM. As pointed out in the preceding section, communication between pro-
cessors, with our current parallel strategy, occupies a significant portion of the
matrix-vector product. Therefore, we did not investigate in detail any perfor-
mance issues such as the scaling of the method with respect to the number of
processors used. Better strategies can be adopted to improve communciation
time, and these will be investigated in future work.

We also plan to examine the physical nature of the HOCO eigenstates, extend
our results for this system, and consider other interesting four-atom systems.
Our current approach focuses on energy states from the ground state up, and,
because of the memory requirements, it is difficult to obtain, say, hundreds
of eigenstates for very large problems such as the HOCO example. Thus, as
with the general numerical eigenvalue problem, an important future direction
is to devise and implement suitable methods for determining eigenstates in
specific energy ranges. For example, the approach outlined here could be ap-
plied with a shift-and-invert transformation or Green function techniques [3].
Filter-diagonalization methods [3,3] also appear to be interesting alternative
approaches to the problem.
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